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SUMMARY

8pectiaknu-ly8ie techniqwx are wed to

obtain the root-meun-sqwwe jlwne-genera+ed turb-u-kmw veloci-

ties and t?w dienuating pr.wwxe jktwtionx 8temrning from
interaction of a conatunt-prewwe jlume front un”th a .fizld of

i80tro~”c turbulence in the ab8ence of iurbw?ence decay proct278e+L

l?w aniaotropic jhne-generated turbulence velocititx are

found to be of about the 8ame inkwity w those of the iwicknt

tiotropic turbukmce, the luteral turbulence velocities ba”~ aJwy8
lower, but the Lmgitudind ve.bciiy t% somewhu.t increawl jor
j?.ame-temperatwe ratw8 over Y. The d-perturbaticm anal-

$k?i8 indicati that the increme?u!d turbulent jkme speed i8 a

second-order quuntity camposed of two part-3. One part repre-
8en& the root-mean-equwe area of the turbulent &me front;
the other repiwents the contribution of h tiansver8e velocity

j?uctuatimw resulting from ti~me-front distortion. Directlg

at the jams front, the n0i8eqwwuxe kw?8 of the prwure

jluctuatiow are fairly intense (69 to 81 db referred to 0.000fi
dyneJsq cm) even at moderate approach-jow turbulence inten-
~%”tiw

INTRODUCTION

I)evelopment of high-output jet engines has stimulated
interest in the role played by turbulence in combustion
phenomena. In the earliest studies of flanwturbulence
interaction, Damkohler (ref. 1) and Shelkin (ref. 2) utilized
mixing-length theories of turbulence to obtain semiquanti-
tative relations for prdcting flame speeds. Damkohler
introduced the concept that turbulence of a scale large
relative to the flame-front thiclmess increases the average
flame speed by increasing the instantaneous flame surface
mea, The relations of references 1 and 2 were not coniirmed
by the experimental values of turbulent flame speed in
Bunsen burners obtained in reference 3. Experiments on
flames stabilized in channels (ref. 4) suggested that approach-
flow turbulence had little effect on burning velocity and that
the disturbances Meeting turbulent flame speed were
primarily flame-generated. A similar conclusion was drawn
in reference 5.

In an attempt to obtain agreement between theory and
experiment, Karlovitz, Denniston, and Wells (ref. 6) and
Scurlock and Grover (ref. 7) have incorporated the concept
of flame-generated disturbances in their recent theories of

turbulent flame speed which utilize G. I. Taylor’s one-
dimensional theo& of diffusion by continuous movements.
The somewhat arbitrwy assumption is made in the analyses
of both references 6 and 7 that these flame-generated dis-
turbances constitute additional turbulence only. In refer-
ence 6 the energy of the flame-generated turbulence is taken
as the differenm between the kinetic energy of the burned
gas in the absence of turbulence and the kinetic energy
obtained by using the average velocity of the burned gas
normal to the turbulent flame front. In reference 7 the
flame-generated turbulence energy is obtained from a
momentum balance of unburned and burned gases before and
after an assumed mixing of the burned gas.

The data obtained in reference 8 on pentane-air flamm
baffle-stabilized in a rectangular duct suggest that the
methods of references 6 and 7 considerably overestimate the
turbulence generated by flame-turbulence interaction. Apart
from the quwtion of validity of such methods of calculating
flame-generated turbulence, objections have been raised
(ref. 9) to calculations of flame speed made on the basis of a
hypothetical upstream turbulence compounded from
approach-stream turbulence and turbulence generated down-
stream of the flame as was done in reference 7 and implied
in reference 6.

The present analysis is primarily concerned with the
turbulence velocities and other fluctuation quantities associ-
ated with the linearized interaction of a free flame (not influ-
enced by bounding walls) with turbulence present in the
combustible mixture. Such turbulence will be referred to as
approach-flow turbulence. The flame is treated as a dis-
continuity specfied by the appropriate fundamental (lam-
inar) flame speed and flame temperature. .The interaction
of such a flame fiwnt with a transverse plane wave, that is,
a vorticity wave or shear wave, of arbitrary inclination rela-
tive to the front is fit analyzed. The effects of an entire
spectrum of transverse plane waves constituting a weak field
of turbulence are then developed from the single-wave
results. The statistical or root-mean-square fluctuation
quantities describing the pressure fields and the anisotropic
flame-generated turbulence resulting from interaction of the
flame front with isotropic approach-flow turbulence are
obtained for the liniting ease of constant-pressure combus-
tion. Some discussions of turbulent flame speed and of
combustion noise are also presented.
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FLAMR-TURBULENCE INTERACTION PROCESS

Turbulent motion may be regarded as a Fourier super-
position of a very large number of different-sized and
randonily oriented component. plane-wave motions. The
customary assumptions concerning the turbulence (see ref.
10) are also made in the present analysis, namely, that
turbulent decay effects are negligible and that the density
fluctuations nasociated with the turbulence are also small
enough to be neglected. The first assumption, which
implies inviscid flow and very small turbulent velocity
fluctuations, permits linear superposition of the component
waves. With the second assumption, the continuity equa-
tion requires that these Fourier waves be transverse plane
waves, that is, vorticity or shear waves. For each of these
waves the local velocity vector d is perpendicular to the
vector ~, normal to the wave front. The vector&is termed
the wave-number vector; its magnitude k is termed the wave
number, which is defined m 2r divided by the wavelen@.
All symbols are defined in appendix A. Any one of the
parallel planes containing both the local veloci@ vector A
and the wave-number vector k k died the “poltition
plane.”

Because of the assumed linear superposition of the com-
ponent waves, the complete interaction results &m be ob-
tained from the study $f the interaction of a plane flame
front with a single-component transverse wave of the turbu-
lence field. For simplicity, this typical vortici~ wave will
first be taken as a two-dimensional wave. Generalization
to the three-dimensional case will be made later. The con-
figuration considered is shoti in sketch (a):

A flame front moves with mean velocity UT into an inviscid
combustible mixture. This mixture is at rest, but contains
a vorticity wave with velocity vector A (components %.
and Oj,C)rmd with wave-number vector ~ inclined at an angle
p to the positive direction of the x.-axis. In the absence of
any perturbation interaction, the plane front propaga~ into
the combustible mixture with velocity ZJ (the laminar flame
speed). & indicated in appendix B, the motion of the
burned gas, whose velocity V is constant,isaway from the

flame front.

-.

FOR AERONAUTICS

The flame front is assumed to be of infinito
extent in directions transverse to the direction of the xc-axis.

A weak inviscid disturbance field may be resolved into a
stationary component and a-moving component, both rela-
tive to the mean local flow (refs. 11 and 12). The moving
component is an irrotational isentropic pressure-velocity dis-
turbance. The stationary component, which is convect ocl
by the mean local flow, is a constant-pressure disturbonco
containing any vorticity fluctuations and entropy fluctua-
tions present in the disturbance field. Thus, the interaction
of the flame front with the vorticit y wave would be oxTectrd
to generate both an irrotational disturbance with velocity
components ~,CI, Vj,b and a rotational disturbance with
velocity COIIIpOIN3nt9 ‘d,b, ‘d)b in the burned gas, and all
irrot ational disturbance with velocity components &~, u;.o
in the combustible mixture. The resulting velocity fluctua-
tions, which include both the irrotatiomd and rotational dis-
turbances, are designated as u& o: and u;, o; for the combust-
ible mixture and the burned gas, respectively. Tlm flame
front is displaced by an amount ~’ (y,t) from its mean or
unperturbed position as a result of the interaction.

The diagrams of figure 1, which are similar to those used in
reference 12, may prove helpful in visualizing the interaction
process. Suppose that at some instant tlthe flame intmsccts
a front of the vorticity wave at point PI of figure 1(a). At
a later time tl+M, the flame has moved a distance UN and
now intersects the stationary vorticity wave front at point
Pt. A vorticity wave with front parallel to line QP, is thm
produced in the burned gas. A cylindrical sound wavo is
generated at point PI at time tland propagates at speed ab
into the burned gas while being convected with velocity — V.
Another cylindrical wave is generated at point PI at time
G and propagates into the combustible mixture with speed
a,. The cylindrical wave fronts thus generated form enve-
lopes (lNfach lines) in both the combustible mixture and the
burned gas, which constitute plane sound wavea.

For the wave-inclination angle p shown in figure 1(b),
an envelope cannot be formed on the burned-gas side of
the flame front. The cylindrical sound wavea thus
expand independently and are thereby attenuated. On tho
combustible-mixture side of the front, the cylindrical sound
waves meet at the common tangent point Pz. For inclination
anglea less than the critical angle shown, attenuating preswnw

I waves are also produced in the combustible mixture until
another critical angle 180°— p is reached. Below Lhia
second critical angle, plane sound waves are again obt ninod.
These critical angles may be obtained from the geometry of

--
@ure 1(b). For small flame lNfach numbers. where kf-~~

~s,.=sin-’ M

,/7
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As the flame hfach number ikf decreases, attenuating waves
are produced for a wider range of inclination angle. In the
limiting case of very slow flow (constant-pressure combus-
tion) ,a only attenuating pressure waves appear in combina-
tion with the vorticity waves if 0°<P<1800. Quantities
associated with the pressure wave vanish when 9=0° or 180°
because the incident vorticity wave then passes through the
combustion front without distorting the front.
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(D) Interaction for wave-numtw vector inclinationsgenerat:mgplane
sound waves.

(b) Interaction for wave-number vector inclinations generating non-
conlescingoylfndricalsound waves.

FIGURE1.—it’ave formation arising from interaction of flame front
with vortioity wave.

SINGLE-WAVE ANALYSIS

TWO-DIMENSIONALFORMULATION

The interaction process described in the preceding section
is now formulated analytically for the paas&ge of a-combus-
tion front through a single weak two-dimensional vorticity,

~It ma b dlOWIltbetth hth—~ ratioam-w a flamefront b gIvenby
fJb/p.Ulq(l-l)aw . . . .

wave of constant density inclined to the flame front. The
case of a vorticity wave in three dimensions is considered
later.

The combustion front is assumed to be completely speci-
fied by its laminar flame velocity U and the ratio of stag~a-
tion temperatures 7 in the burned gas and in the combustible
mixture, respectively. In the absence of any perturbations,
the equations for conservation of momentum, energy, and
mass-flow rate, respectively, as written for a reference frame
moving with the flame front, are

( )
=% G+: (u– T’”)’-@ + u’ _

T 7—1
t

(1)

where subscripts c and b desibwate stations in the combustible
mixture and in the buraed gas, respectively. I?or simplicity
it has been assumed that the combustion process does not
entail a change in the number of moles per unit mass of gas;
also, differences in the ratio of specific heats for the burned
and unburned gas are ignored. The quantity (~— 1) is then
indiwtive of the incremm in stagnation enthalpy or heat
release.

For the interaction problem the resulting flame-front
distortion f’(yjt) must be considered in addition to the
generated disturbances previously mentioned. Thus, botb

a~f
the flame-front perturbation velocity ~=~ and the instan-

taneous flame-front slope X =f~ will appear in the equationsay
of motion. The conservation equations may still be applied
in a coordinate system moving instantaneously with the
distorted flame front since extreme gradients occur across
the front and small disturbances are postulated. The
various perturbation quantities (designated by primes) are
assumed to have zero space or time averages. The flame
speed UT (see sketch (b)) will thus include any time-

“--lEs’ -----
i
I

\
‘--Perturbed florne front

I
(b)

independent contributions arising from the perturbations.
Conservation of normal and tangential momentum, energy,
and mass-flow rate provides the following relations:
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(P.+M [1+(GM+(PC+P2 [wT+G–d)’+(@L)2 (G)’+ 2uT+#–~:)o:Gl

=(n+z.i) [l+(&)q+(pb+p:) [@T–VT+&–U:)’+(O;~(4)’+ 2@T– v~+4-OL%l (2a/)

WT+G–G?G–Vi=VT– VT+ G–4)[;–Vi (2b)

Small-perturbation techniques are used to make the interaction problem amenable to analysis. Then, if the velocity
perturbations are assumed to be small relative to the flame speed UT and the flame-front slope & is also assumed to be
very small so that terms of the second order in the fluctuation quantities may be neglected, application of tho linmr-

“ “ I ~ and utilization of equations (1) permit the following boundary conditions at tlm flamoized state equation ——
PP

front to be obtained from equations (2):

where

It has also been assumed that the flow upstream of the
flame is isentropic. It will be shown in the section TUR-
BTJIJ3NT FLAME SPEED that UT= U is correct through
first-order terms.

Another relation is required at the flame front. For the
twodimensional case under comideration, the local instan-
taneous normal propagation veloci@- U+ 3U of the dis-
torted flame front into the combustible mixture at rest (see
sketch (b)) is

The incremental propagation velocity 13Uwill be determined
horn existing information on laminar flames. Some sup-
port for this procedure is given in referenm 13. As reported
therein, radiant flu-intensity measurements on laminar and
turbulent propane-air flames suggest that a small surface
element of a turbulent flame is chemically and physically
the same as that of a corresponding ltiar flame.

The propagation speed of a laminar flame is affected by
both the ambient pressure and temperature. Although
the functional relations have not been rigorously determined,
prelimin~ indications are that the pressure effect is much
smaller than the temperature effect. In the present analysis

(30)

(3b)

(30)

(3d)

(4)

the local flame-propagation speed is assumed to depend only
upon the temperature of the combustible mixture, that is,

With the empirical relation obtained in referenco 14 as o
guide, it is assumed that U=rl+r~TT where rl, r~, and n are
constants which depend upon the fuel and oxidant under
consideration. Thus,

Correct through first-order terms w-herein UT= U, tho fol-
lowing boundary conditiqn is obtained at the flamo front:

$–4_=A &
u Pc

(30)

In a coordinate system fixed in space, the equations of
motion for the two-dimensional fluctuation quontitiee in
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the burned gas with terms of the second order neglected are

I?or a coordinate system moving with constant velocity V,”
tho preceding equations reduce to the same form as the
corresponding equations for the fluctuation quantities in
tho combustible mixture relative to a coordinate system
fixed in space. Thus, the flow equations for both the
combustible-misture fluctuations and the burned-gaa fluc-
tuations may be written, with appropriate subscripts c or
b, flR

auf_ I ap’
z——; G

%=-&-%9

‘--G+%)
/-% at —

(5)

The coordirmte systems x.,y and xb,y for the tit-order
analysis are indicated in sketch (c).

f,f

Y( I
[ /1 Cwrk@ible mixture

i
I Instantaneous flame frcmt

}
I

I I

I I

&v@
I
1 ‘b

p-x:=-/ xc

A two-dimensional
mixture with velocity
wave-number vector ~
direction of the xa-axis

(c)

vorticity wave in the combustible
vector of magnitude ~ that has its
inclined at an angle q to the positive
may be written in the form

where vG k~x.+k~y, and k; and k; are components of the
wave-number vector L in the ZO- and y-directions, respec-
tively, with kj/k~= tan p. As a result of the linear boundary
conditions of equations (3), obtaining a unique solution of
the interaction problem requires that the arguments of all
disturbance waves match at the flame front. This matching
requirement together with provision for differences in phase
angle yields the following form for the vorticity wavo
present in the burned gas: ~

~=(a,+i (?,)ef*, $j!=(I,+iIJe’*

where

*“(’V) ~zb+ti

Pressure fluctuations generated by the interaction must
satisfy the following wave equation, with appropriate
subscripts c or i5, which is obtainable from equations (5):

%’-’2(%+%)=”
(6)

&e present analysis will be concerned with the limiting case
of very slow flow (constanbprewure combustion). It is
clear born the relations given for the critical wave-inclination
a=Wka pm,. and rp~,b that, for very slow flows, ordy the irrota-
tional isentropic pressure waves described in the section
FhITURBULENCE INTERACTION PROCESS m
be generated by the intqaction. The form of these pressure
waves that satisfies equation (6) has already been established
in reference 12 in terms of the variables q and ~, where

(7)

{b= bbxb+cbll+udbt J

The variable ~ is proportional to the distance fkom the flame
front. At the front, ~d=~b=’; upstream of the flame,
q. is positive; and downstream of thO fl~e, ~b is positive.
The equation ~=constsnt defies planes moving with con-
stant velocity (Ud) ~b at an angle tan-l (c/b) ~ a to the flame
velocity u. Equation (6) takes the form of the Laplnce

(8)

J

NIatcliuig arguments of the pressure and vorticity waves at
the combustion front where q=O and satisfying the require-
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-merits of equations (8) provide the following values for the
constwits of equations (7):

(9) I
In nddition to the boundary condition from equations (3),
the pressure fluctuations will be required to satisfy the

boundary condition Z=() at, ~= 03. Utilizing equations

(36) and (37) of refere~ce 12 yields

(10s,)

(lOb)

In the combustible mixture, densi~ fluctuations are associ-
nted only with the pressure fluctuations nccording to the

isentropic relation ‘=L’.
P. ~ n

In the burned gas, density

fluctuations may d-so b; ‘caused by entxopy fluctuations
generated by flame distortion and heat-release fluctuations,
if present, as well as by preswre fluctuations. Velocity
fluctuations are associated with both pressure fluctuations
and vorticity fluctuations. It is convenient to deal with
the pressure coefficient @/PJL2. Thus, the disturbances
arising from the interaction of the flame front and incident
vorticity wave take the following forms:

$=(F’l+U’Jefrb_’L+ (L+iQd+ (log)

$+TV1+iWJeir”-”’+(A sin p)ef’ (lOh)

~=(Xl+iXJe’re–qc—(A cos q)d” (lOi)

The flame displacement velocity may be written I

~~~l-~~E MUM AJ3JKLNAurJJ(J~

To satisfy the requirements that the arguments of all dis-
turbance quantities match at the flame front and tlmt
ay 2)’[ -

— =—J the flame-front slope mus~ take the form
at~ *at

~=(Hl+=J(tan P)e’” (lOk)

Integration of equation (lOj) with respect to time t gives the
flame displacement as

.!?=$ (Hj–@Je’”=* (H~–iHl)u’” (101)
1

EXTENSIONTOTHIIEE-DIMENSIONALDISTURBANCES

Equations (10) describe the interaction of a fhzme front
with a constant-density vorticity wave having velocity com-
ponents

~~c_ A SiII p)e” and %=(
u ‘(

—A cos q)ei”

in the XC and y-directions, respectively. The vorticity waw
may be considered to have a third velocity compommt
W:,c~= CeiV in the zdirection. In the preceding linenrizcd

analysis, the amplitude C was not prescribed. This com-
ponent, which is normal to both the U’ and O’ components
and parallel to the plane of the flame front, then is associated
with a corresponding component of the vorticity wave in tho

burned gas ‘~= Cei~.

Inasmuch as turbulence fields are three-dimensional, the
interaction equations must be revised accordingly for applica-
tion to the spectral analysis which follows. Assume, as
shown in sketch (d), that the polarization plane which will
contain the wave-number vector & is inclined at some rmgl~ 0
to the xl,.~,.-plane of a new coordinate system x1,,, w,C, ra,c
fixed

The

in space for the combustible m.i~%ure.

X2, c

-xx
X3,C

td)

COITE%poIdkg Codhate Sysbm %, b, %!j b, % b for the
burned gas is assumed to be moving with mean flow velocity
V. Components k,, k,, and Irsof the wave-number vector k
in the directions of z] ,~, %,C, and XW, respectively, nro

k,=k COSq

k,=k Sill Q COS61 (11)

k3=k Sill P Sill O

With primed perturbation vector quantities referring to 111o
original coordinates z,, Zb, y, z and unprimed perturbation

. .
vector quantities referring to the z1,C,G, e, %, c nnd Tl!b) r2Jbj
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%)b-coordhat% systems, the fo~owing transformation re]a-
tions apply:

~ .=U: ~,+

~.=i coa O–wl sin O % b=v~ ME 6—W; SiII e

u&*+ sin 8+-W: Cos e ~b=v: SiU &+W; 00S 6

~+’

I

(12)

.5=.4

L%~=g; Cos e

.&=g sine

This notation refers only to equations (12).
Whh the use of equations (10) and (12), the interaction

fluctuation quantities (again designated by primes) referred
to the coordinate axes x1,,, %,,, %,. and %b, %!jbj %b may be

mitt en as

&=(RW+~RCO)efr.-.
pcv

‘i _(J~J+~J@))#b-nb
pcu~

$=$ (R1+i&)eirCT”

fi=~ (J,+iJJe’r’-v’+ (L+&)ei~

,
~=(W+zW~efr”=’+(A sin p)ef’

*=(XL+iXJ(COSO) Jr”-’’–(A cos p cOsO+CsinO)e”

ff.~.‘>=(Xl+iXg)(sin f3)e –(A. cosqsinO-Ccos@ei’

‘~=(171+iIVJ elrb-n’+((71+{GQe’$

‘#=(P,+i.P,)(cOs e)&= +[(I,+U2)COSe–0 s“mo]ei$

‘b-b+ [(ll+ilJ sin 0+ C cos O]eff’~– P,+w,) (sin 0)+~ –(

“ H,+iH2)e’UD=(

.&=(Hl+~HJ(t~ w cos o)e’”

G%.=(Hl+@(tan 9 sin o)e~

~,=(Hz–iH1)e’C
k;

(13)

Tbe fluctuation amplitude coefficients of equation (10) or
(13) may be determined horn equations (3) and (5). Details
of the solution are given in appendixes B and C. The general

solution for the attenuating pressure-wave regime is indicated

uh appendix B. km-smuch as the flme ~Iach number J~E—
ac

is generally much less than 0.01, the limiting case of very
slow flow (constant-pressure combustion) provides a reason-
able simplification of the problem and only the attenuating-
wave solution need be considered. The amplitude coe5-
cients for this limiting case are given in appendix C (eqs. (C8)).

Equations (13) and (C8) describe the linearized interaction
of a constant-pressure flame front with a single vorticity
wave or shear wave having its wave-number vector& inclined
at an angle p to the direction of tiavel of the undisturbed
flame front and having its plane of polarization inclined at
an angle 8 to the X1,6,%, C-plane of the coordinate mes Xl,~,
%,., %,,. The wave-number vector of the .&w wave
generated in the burned gas makes an angle ~b=tan-l
(T tan p) with the direction of propagation of the undisturbed
flame front. Attenuating potential fields are generated in
both the combustible mixture and the burned gas. Physical
quantities associated with these fields attenuate exponentially
with increasing distance from the flame front. The ampli-
tude coeilicients for a given heat release (a prescribed ,)
and a given inclination angle p and a polarization angle o
depend upon both the intensity of the incident vorticity
wave and the heat-release perturbation paraetw r’/r. In
the absence of such heat-release perturbations, there are no
densi~ fluctuations in the burned gas (correct to order J@).

These single-wave results may be used to determine the
intwaction of a constant-pressure combustion front with a
turbulence field of constant density for the case of negligible
turbulence decay. The turbulence field will contain an in-
finite number of transverse plane waves with all wavelengths
and planes of polarization. The spectral analysis technique
used in obtaining such a superposition of waves will be dis-
cussed briefly before proceeding with the interaction problem.

SPECI’RAL ANALYSIS

GENEEtAL CONSIDERATIONS

A turbulence field satis~g the incompressible-flow con-
tinuity equation may be represented by the following super-
position of plane transveme waves:

.

?&t)
SSS

e@~d~(k, t)
—.

where z is a position vector, L is a wave-number vector, t is
the time, and dZ&) is the random amplitude vector of a
component wave. The quantity d~&,t)eW represents the
contribution to the velocity field from a volume element ti~
in wave-number space. When, as in the present case, the
equations of motion are linear there is no modulation or
interference between component waves, and the various sta-
tistical quantities describing a random field may be obtained
from the rwdts of a single-wave analysis. To avoid the
interpretative difficulties associated with the random variable
~@,t), which is nond&rentiable with respect to & use is
made of the techniques of references 10 and 15, which utilize
correlation spectra rather than amplitude spectra in the
analysis of homogeneous turbulence.
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A velocity correlation is defied as the ensemble average

wkt)w @’,t) of the product of a fluctuation-velocity com-
ponent ut at g and a component Uj at ~’ =~+~ where ~ is a
separation vector. The subscripts i and j take on the values
1, 2, and 3. The ensemble average, designated by a bar,
may be regarded m the result of averaging the product
u&t)uj@t) at a given instant over a very large number of
statistically similar fields. The nine veloci~ correlations
uiuj constitute the velocity correlation tensor Tfi(a&, t].
For n homogeneous field, T,, depends only on ~ so that the
tensor may be written Tti@t).

k shown in references 10 and 15, the velocity correlation
tensor has the following Fourier integral expansion:

m

T,j@, t)=
SSS

d (52 d.Fi&t)=
SSS

= ef(Z)@fj(k,t)dk (14)
—m —.

where .FU(~,t) is tie spectral tensor function, @ti(&,t) is the
spectral tensor density of a homogeneous turbulence field, and

@*&t)~=dz@)dz&t) (15)

where dz (k,t) denotea the wmplex conjugate of dZi(&).
For r=O and i=j, equation (14) maybe written

m

T,,(o,t)=z=
JJJ

dz&t)dz*(_k,t)
—.

(16)

For homogeneous turbulence fields, wherein ensemble aver-
ages and space averages are identical, equations (15) =d (16)
provide the basis for obtaining the spatial mean-square
velocity components born the single-wave resuIts given by
equations (13) and (C8). Equations (15) and (16) are also
applicable to scalar fields. In the absence of viscosity, as
postulated, the shear-velocity fields present in the com-
bustible mixture and in the burned gas are homogeneous,
and application of equation (16) presents no complications.
The corresponding potential-flow fields, although spatially
inhomogeneous, are homogeneous in the given u,%planes.
It hm been shown in reference 16 that equation (16), in
effect, may be applied for such fields to obtain the mean-
square fluctuations pertaining to a given plane of homo-
geneity.

As a result of the preceding discussion, the single-wave
interaction results for constant-pressure combustion will be
used to obtain the spectral densities of the fluctuation
quantities at the flame tint where the attenuation factors
e-oo and e-w me uni~ nd ~0= ~~=u=~=p. For concise-

ness, define RA sin p=Ra) +iR(2), WA sin p= WI +iWa,

GA Sill p= Gli-iGi, NA Sill P=iV1-FiNZ HA sin PEHl+iHi,
and GA sin p= C. Wltb the notation

m

– SSS
%1,.= q

—m
and, for example,

(iwTJ@)*wa
—m

as in equation (16), the following equations are obtained by
analogy with equations (13) rmd (C8) for the cam where
heat-release perturbations are absent, that is, r’= O:

()
d ‘~ =w~,,o+dZl, c

()
d ~ =–awcos OdZ,, C-(cot p COS 8+@ sin O)dz,,,

()
d ‘> ——~WsinO &Z,, C-(cot P sin O—Cl cos O)dZ,,.

()d % ‘N ““+Q ‘i’”

() (

cot p Cose
d ‘~ “iNCOS6d ZIvC— ~

)
0+01 sinll dZ1,,

() (

COtP sin” G–@ c086 dzla,
d ‘~ =~Sin6~l..— ~

)

(17)

In the velocity ratios of equations (17), the ilrst term on (ho
%. p, eright side represents the potential-flow contributions ——
u

or ‘~ the second term represents the shear-flow contri-

butions ‘~ or ~ The subscript i takes on the values

1, 2, and 3.
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At a given instant the spatial mean-square potential- and shear-flow contributions of the disturbance fields are obtained
from equations (17):

(w’=sfsd”+-—.

(W’=SJT(G*(3) CLq*d’,,.
—.

Tho mean-square flame-front quantities are

—m

From equations (C8) of appendix i? with ~’=0:

~*~=(’–1)’(” tan’(o-ly
A Sill=P

w*w=(”—1)*(Ttan*w-1)2
A

**G= r’ sec’p [A–4r(#–l)tan2w]
A(l +72 tan’p)

(19)

HWH=4T2 SW2$0

A
4

&fEAN-SQUAREPLUOTUATIONSPOEINITIALISOTEOPICTURBULENCE

For rLgiven combustion process (r and ~ prescribed), the
spatird mem-square fluctuations of equations (18) depend

4MS7LI-G740

(18)

upon the quantity ~,. d-&, which is spec%ed by the type
of turbulence present in the Combustible mixture. The
results obtained in reference 16 for the interaction of r&
symmetric turbulence with a shock wave suggest that for
the present problem, the degree of anisotropy of the incident
turbulence field may not be critical. For simplici@j the
turbulence in the combustible mixture is assumed isotropic.

As indicated in reference 10, the spectral density ten-
sors for any isotropic turbulence field satisfying tbe
incompressible-flow continuity equation are

@fj@= fl(k)(k’&,-k&) (20)

where JP=~+~+ti; tiij=l for @j; &j=O for i # j; and
fl (k) is the scalar amplitude function defining the spectral
densi@ tensor. From equations (15), (20), and (11),

d’:,ad’,,c=n(k) k’sin’vdk
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or, transforming to spherical polar coordinates k, 8, q, wherein
&=dk, dlq dk,=l& sin ~ dk de d~, yields

(23d)

(230)

(23f)

(w)

(23h)

(%9’ (%9+(%9’

(w’= (%-Y
The mean-squme velocity components of the incident iso j
tropic turbulence field are then given by

()
&t’
u

=3?
J

r ‘in ‘~’ ‘dP

()
~2 o
u

The remaining spatial mean-square fluctuation quantiti ,

~
referred to the intensities of equations (22) in order that th
scale need not be specified, are given by

The subscript 1 designates a longitudinal component; sub-
scripts 2 and 3 designata the lateral components. Of tlm re-
maining subscripts, s denotes a shear-flow component; p
denotes a potential-flow component; c refers to the combusti-
ble mixture; and b refem to the burned gas. Equations (23u)
to (23g) have been integrated numerically using Sipson’s
rule with the following increments for w 2° intervals from
0° to 20°, 5° intervals from 200 to 70°, 2° intervals from 70°
to 90°, and so forth. Numerical results am listed in tuble I.

I

()
~b 2

I

u
J

3+ “ [A—4ti#-l)tan*q] sinqtan2p

()

‘z “ A(l+ # tahz P)
dq (23$)

~z
u I

TABLE I.—FLAME-TURBULENCd INTERACTIOAT FLUCTUATION RATIOS

m /!%3 a
(w. m)) (W.w)) (m.m))

F;(”%9’
m

-
!..--.---.--

--’+g----
--i:m----

/:z
&

I
I

II

r(39’
(%9’

(al. cm))

o
-------------

.7140
-------- -----

.82ss
-.----- ------

. M16

il%
L@33
LZW

r

I

7
(w. cm) (w (a))

LCOXJ
-------.---.- ;%

.am
---------- --- 1.6$31

.4590 .7974
--------- ---- .M69

.2307 . 2s21

:% :&l
. 14e2 .Omo

o 0

(Cff4.m) I

l..

. S314 I Lcmo
.9333
- 912n I o

-.-------- ---
.7’024

1. w
L06b3
1.4270
1:g

.SM@

.W7

.4?24
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.Iwo
o
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.9976 .8772 .932s

;% :E% i~
.Sm L~
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DISCUSSION OF RESULTS

Mean-square fluctuation quantiti~ generated by the
linearized interaction of a constrmt-pres.sum combustion
front with a weak isotropic turbulence field satisfying the
continuity equation for incompressible flow are given by
equations (23) in terms of the incident-turbulence-velocity
components. Equations (23a), (23b), and (23e) apply only
at the flame front where the attenuation factors are unity.
This restriction does not apply to equations (23c) and (23d)
in the assumed absence of turbulent decay processes.

VELOCITY FLUCTUATIONS

Potential-flow fluctuations.-The root-mean-square ve-
locities associated with the attenuating pressure fields gen-
erated in the combustible mixture (eq. (23b)) and in the
burned gas (eq. (23e)) me plotted in figure 2. Since these

, , 1 I , 1 I I
l“”; ,s,”,- P1— —
LI--v&’”’””
I-----—-—(q. (“e) )

(eq.(23M)

Mential-flmv

Sheer-flw
vekdtks

velocities

Flome-teqwroture rotio, T

IMJum 2.—~ffeot of flame-temperature ratio on shear-flow and
potentinl-flowvelocityfluctuations.

ratios apply only at the flame front where the exponential
attenuation factors me unity, they represent mtiumvalues.
As is to be expected from the boundary-condition require-
ment of equal pressure fluctuations with difTering densities
on each side of the flame front, potential-flow velocity com-
ponents in the burned gas exceed those in the combustible
mi..ture. Both ratios increase with increasin

F

flame-
temperature ratio, reaching asymptdic values of 3/2 in the
burned gas and 1 in the combustible mixture. Hot-wire in-
strumentation will respond to these fluctuation velocities as
well as to the shear-flow fluctuation velocities. In view of their
esponentird attenuation characteristics, however, such con-
tributions would not be of importance unless measurements
were made at stations very close to the flame, that is, within

a distance of the order of incidenht urbulence scale. For
the low flame Mach numbers encountered in combustion, tlm
contribution to the hot-wire signal vol&me of the unatten-
uated sound waves described in the section FLAM13-
TURBULENCE INTERACTION PROCESS should bo
quite small.

Flame-generated turbulence.-The shear flow in the
burned gas (eqs. (23c) and (23d)) constitutes the flame-
generated turbulence occasioned by the presence of approach-
flow turbulence. These velocities, referred to the incident
turbulence velocities, are also plotted in iigure 2. A slight
amplification of the longitudinal component occurs for
values of 7 over 7. Ln the limit, as r becomes very large the
longitudinal and lateral velocity ratios approach asymptotic

values of ~~2 and ~ ~fi, respectively.

The diagrams of figure 1 indicate that a pressure wave
interacting with the flame front can also bring about a shear
flow in the burned gas. Although the reflection and the
consequent impingement of the pressure fields described by
equation (23a) upon the flame front are possible, any addi-
tions to the flame-generated turbulence level through the
reflection process would probably be negligible because of the
attamating nature of the pressure field. Thus, contrary to
the predictions of references 6 and 7 that the flame-generated
turbulence intensity should be many times greater than the
intensity of the incident field, the present analysis indicates
that the two intensities are about equal.

It is interesting to note that a stream contraction (ref. 17)
increases the downstream velocity of the mean flow (as does
the flame front also) while exercising a diflerent selective
effect upon an incident isotropic turbulence field. For ex-
ample, with. a sevenfold increase in the do.mustream velocity
of the mean flow, the longitudinal velocity ratio (in the ab-
sence of decay tiects) is 1.01 for the flame front and 0.31
for the contraction. The corresponding lateral veloci~
ratios are 0.87 and 2.29, respectively.

TURBmENTmA&IESPEED

The higher mass-flow burning rate of a turbulent flame as
compared with that of the corresponding laminar flame is
generally described in terms of a turbulent flame speed U=.
The flame-speed ratio UT/U is generally assumed to be
equivalent to the ratio of turbulent-to-hmiinar flame surface
area.

Calculation of the turbulent flame speed requires con-
sideration of second-order terms. The local instantaneous
normal propagation velocity U+ 8U of the distorted flame
front in~ &e-combustible &ixture at rest is

UT+t;—~;. .%% ~< c+&. ~% 0
U+cw=

41+::,.+L:.~

Let V,= U+ U,+ U~+ . . . where UN represeds
state contribution to the flame speed of order
perturbation quantities, for exmnpl~, are written as

4=.f;+&+ -..

u; c=w+u;!.+ . . .

(24)

a steady-
iV. The
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The superscript on a fluctuation quantity H indicates the
order of the perturbation. As before, i$U/Uis taken as

Substitution of this expression into equation (24) and per-
forming the indicated expansions yield the following rela-
tion, which is correct through second-order terms:

iirst-order second-order terms
terms

z~
second-order terms

terms

The imagimwy term has not been written out inasmuch as
it does not contribute to the integral. The results of the
indicated integrations are listed in table I.

Equation (25) for the flame-speed ratio UJU may also
bo written in the form

(27)

where the flame-speed parameter S is obtained from the
values listed in table I from equations (23g) and (26). The
variation of this parameter with the flame-temperature
ratio ~ shown in iigure 3 suggeets, on the assumption that
the flame-front slopes ~, ~ and ~ ~ govern contributions to
the right side of equation (25), that the flame fkont with the
higher heat release is distorted less by a given intensity of
turbulence. For the degenerate case T= 1 (no heat release),
the parameter S becomes infinite-a condition compatible
with this viewpoint.

The present analysis requires that the flame-front slopes,
as well as the other perturbation quantities, be small. The
preceding discussion suggests that the incremental flame-
speed ratio (UrU)/U may be of tie second order as a
result of this restriction to small flame-front slopes.

COMBUSTIONNOISE

Tho rookmean-square pressure-fluctuation coefficient

@l,Wj ~bich appli~ direcdy at the fl~e front, iS
plotted in figure 4 for the limiting case of constant-pressure
combustion. The pressure fluctuations are a measure of the
random noise generated by the interaction of the flame front
with the incident turbulence. In acoustical measurements,
the noise level in decibels is usually given with r~pect to a
reference pressure of 0.0002 dyne per squaxe centimeter

Averaging this equation yields
-.
UI

U“
—.

.—

For the limiting case of constant-pressure combustion, I’ = O.
Thus, the ratio of turbulent-to-laminar flamo speeds can bo
written for this caee as

The first two terms on the right side of equation (25)
represent the ratio of averaged turbulent-to-lnminar flame
surface area. The third term is 8 correlation coefficient
representing the transverse-veloci~-fluctuation contribu-
tion to the turbulent flame speed caused by flanwfron t
distortion. It is interesting to note that only the trans-
verse velocity fluctuations appear explicitly. Tho second
term has already been determined (eq. (23g)). Tho third
term may be obtained horn equations (C8) as

P+(7’+1) tan’ P+(7+1)] ‘&+iQ} & (26)

1.4

1.2

\

% 1.0

3- \
2~
a .8
x
z.

; .6 \

\

.4

\
\

~
.23

5 7 9 II 13 15
florne-kdnperature rotio, T

FIGURE3.—Effect of flame-temperature mtio on flamo spood for
incident isotropic turbulence.

(ref. 18), which corresponds approximately to the prowue
amplitude of a plane sound wave of minimum audiblo
intensity at a frequency of 1000 cycles per second. The
noise-pressure level in decibels is defined by the se]ation

(. )47 =74+2(3 bglo@ (28)
Noise-pres-surelevel =20 loglo m

where the pressure fluctuations in the combustible mkLuro
we given in dynes per square centimeter.
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TABLE JI.-HYDROCARBON-AIR FLAME DATA AT SPECIFIED CONDITIONS
[StatloprmsIReendtemmatore0[mm-e ~ 7CJ)nun Hgand!@O,remxdvdy.]

Prome, O&b Etbylen%GHI Acotylme,GHt

d“

AtstoiohlomeMoAt~m V AtstoieMxmkioAtmaxbnomV At6toicMmetrioAtmum V

Fuelti mtio... .......................................................- am 0.3. : CEJ76
FUO1Inolr,percentby volme.- . . . . ..-- . . . . . . . . . -----------------------

: gb7 a07Jn clIwo
Lomlonrm Sm, u, m@—------------------------------------- $: s 64

la70
es” d?

AdIabttollmetom~ture lntiO,. .. .................................. . 7.45
141

7.96 am aoi a 71

fiauRD 4.—~ffcot of fkmm+mperature ratioon random pressure
fludmationsgeneratedatflamefront.

J3quations (23a) and (28) indicate that the noise level
should be particularly dependent upon flame speed. propane
air and acetylene-air combustion, which are character-
ized by a low flame speed and n fairly high flame speed,
respectively, will be considered for illustrative purposes.
Pertinent data for these flames at maximum-flame-speed and
stoichiometric conditions for an ambient temperature of
26° C and a pressure of 760 millimeter of mercu~ are given
in table II. The adiabatic equilibrium flame temperatures,
at which the total enthalpy of the fuel and oxidant equsk
the total enthalpy of the products of reaction, were cfdcu-
lated using the procedure of reference 19. (Total enthalpy
includes the chemical contributions to the internal energy.)
~lame-speed data were obtained from references 20 and 21.

If the flame-front turbulence intensity ~~~is assumed
equal to 10 percent, noise-pressure levels of 59 and 81 decibels
am obtained for propane-air flames and acetylene-air flames,
respectively, under conditions for maximum laminar flame
speed. At an approach-flow velocity of 1225 centimeters per
second, which is in the range of velocities usually encountered
in combustion experiments, the corresponding intensity of
tho approach-flow turbulence would be about 0.3 percent
for the propane-air mixture and about 1 percent for the
acetylene-air mixture.

Thus, the pressure fluctuations generated at the flrune
front when the incident turbulence is of low intensity,
although small compared with ambient pressure, are appar-
ently of fairly high acoustical intensity for constant-pressure
combustion. Because of the exponential attenuation of
these pressure fields, tbe “far-field” acoustic intensity (the
intensity at distances very far from the flame front) ap-
proach zero. For cases other than constant-pressure
combustion, a finite “far-field” intensity is obtained.

CONCLUDING REMARKS

The present linearized analysis has treated the interaction
of a field of isotropic turbulence with a free fkune fkont under
constant-premure combustion conditions with no turbulence
decay processes or heat-release fluctuations. The interac-
tion produces an anisotropic turbulence field in the burned
gas which has axisymmetry about the mainstream direction.
Contrary to the results predicted by several current theories
of turbulent flame speed, the flanwgenerated turbulence
velocities caused by approach-flow turbulence do not differ
greatly from the turbulence velocities of the incident field.

The incremental flame-speed ratio (U,– ~/U as obtained
from the present analysis is a second-order quantity con-
sisting of two parts. One part represents the root-mean-
square area of the turbtient flame front; the other represents
the contribution of the transveme velocity fluctuations which
result horn the flame-front distortion. The flame-speed
ratio UT/ U for a given leVel of incident turbulence intensity

CIU k feud to decrease with increasing heabrelease
rate9 (increasing vsJue9 of T).

Random pressure fluctuations generated in both the com-
bustible mixture and the burned gas, although small com-
pared with ambient pressure, give rise to appreciable noise
levels (59 to 81 db) directly at the flame front even for very
moderate intensities of approach-flow turbulence (flame-
front turbulence intensities of 10 percent). For the limiting
case of constant-pressure combustion, the pressure waves
attenuate exponentially with distmce &om the flame front,
so that the “far-field” intensity approaches zero.

LEWIS lhIGHT PROPULSIONLABORATORY
~ATIONfi ADvIsoRY CommE FOR Aeronautics

CLIWFAAND, Oreo, January M, 1955
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APPENDIX A

SYMBOLS

ma~titude of two-dimensional vortici@-

wave veloci~ vector in combustible mix-

ture

hvodimensional vortici@-wave velocityvee-

tor in combustible mixture

speed of sound

coefficientsdeihed in eqs. (4)

constant defied in eqs. (7) and (9)
amplitude of combustible mixture shear-

wave component parallel to ~ .-axis
constant defined in eqs. (7) and (9)
specific heat at constant pressure
speciiic heat at constant volume
U/(U–V), eqs. (4)
constant deiined in eqs. (7) and (9)
– V/U’, eqs. (4)
spectral tensor function
constant defined in eqs. (7) and (9)
(@,+i(3,)/A SiU P

ampIitude coefficients of shear-wave longi-
tudinal component in burned gas

(H,+@/A sin q
amplitude coefficients of flame-hmt dis-

placement
groupings defied in eqs. @16)
amplitude coefficients of shear-wave trans-

verse component in burned gas
amplitude coefficients of pressure wave in

burned gas

coefficients defined in eqs. (4)
magnitude of wave-number vector &
wave-number vector of shear wave in com-

bustible mixture with components k~~~
in xe,y-coordinate system, with ~m-
ponents kl, k2, ka in xl, ~,w,., xa .-coordinate
system

amplitude coefficients of density associated
with shear entropy wave in burned gas

flame-front hlach number, &f= U/ae

d~v, eq. @lG)
(N*+iN2)/A sin $0
amplitude coe5cients of longitudinal ve-

locity component associated with pressure
wave in burned gas

exponent used in representation of kuninar
flame speed = function of combustible-
mixtme static temperature

amplitude coefficients of lateral velocity com-
ponent associated with pressure wave in
burned gas

static pressure
static-pressure perturbation
term not ‘contributing to the integral in

eq. (26)

R
Rg
R,J&

R(1),R(2)

T

fl ,r2

s

T
To@t)

T.
t
u
u.
u’

U1,~,‘lL2.~,‘l&,,$

%, b, %,b, % b

v
v.

d
w
Wl, w,

w’

x,,X2

g
Xb

xc

%, b

% b

%b

(R(l) +Ro))/A Sill p

gaa constant
amplitude coefficients of pressure wave in

combustible mixture
R(’) =R,/YiW,R@) =R#YM’, eq. (1OC)
separation vector
constants used in representation of lamiuar

flame speed as function of combustible-
mixture static temperature

flame-speed parameter, eq. (27)
static temperature
velocity correlation tensor for homogeneous

turbulence
stagnation temperature
time
Iamimw or fundamental flame speed
mean turbulent flame speed
longitudinal component of velocity perturba-

tion
velocity perturbation components in com-

bustible mixture parallel to %,,%,,%,-
coordinate axes, respectively

velocity perturbation components in burned

@ padel to $1,b,% b,% b-coordh~t~ fkx~s,
respectively

mean velocity of burned gas
mean velocity of burned gas in turbulent

combustion
lateral component of velooity perturbation
(W,+iW,)/A Sk q

amplitude coefficients of longitudinal veloc-
ity component associated with pressure
wave in combustible mixture

lateral component of velocity perturbation
(component parallel to plane of unper-
turbed flame front and normal to u’ and
v’ components)

amplitude coefficients of lateral velocity
component associated with pressure wnvo
in combustible mixture

position vector
coordinate in xb,y~stim measured in clirec-

tion of unperturbed flame-front travel
relative to which burned gas is at rest

coordinate in xC,y+ystem measured in direc-
tion of unperturbed flame-front travel
relative to which combustible mkturo is
at rest

COOrdiUa& k Z],t.&,@& b-ystem mea.surod
in direction of unperturbed flame-front
travel relative to which burned gas is at
rest

coordinate orthogonal to z], b and ~, b and
making angle 0 with y-coordinate

Coordhab Orthogonal to xl, b and X2,b



x],.

% e

%0

Y
CM,(k,t)

z
q,cq .

r

‘Y
A

t
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coordinate in xl, c,%,.P%.-system measured
in direction of unperturbed flame-front
travel relative to which combustible mix-
ture is at res,t

coordinate orthogonal to xl,. and ~. and
making angle 8 with y-coordinate

coordinate orthogonal to xl, ~and %, ~
coordinate orthogonal to z. and xb
random amplitude vector of shear-field

Fourier component
coordinate orthogonal to x= and y
grouping defined in eqs. (B18)

(pl)nT~TC)n-+M

m.
ratio of speciiicheats

#(7–l)%an4q+27(# +27–l)tan2q+ (7+1)2

grouping defined in eqs. (S24)

grouping defined in eqs. @21)

variable upon which pressure -wave depends,
eqs. (7)

variable upon which pressure wave depends,
eqs. (7)

angle between polarization plane of incident
shear wave and z1,.,w .-plane

coefficient defied in eq. (3e)
k;za+&y

flame-front displacement

flame-front displacement veloci~
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+

Q

Subscripts:
b
c
cl’

P
8
1,2,3
1,11
Superscript:
1,11
*
!

flame-front slope with respect to ~, .-coordi-
nate

flame-front slope with respect to ~, .-coordi-
nate

flame-front slope with respect to y-coordinate
static density
staticdensity perturbation
k~Ut+l&y, eq. <lOj)
flame-temperature ratio,T8,~/T~,,
spectraldensity tensor

angle between wave-number vector of iuci-

dent shear wave and direction of unper-
turbed flame-front travel, tan q =k~lk:

scalar amplitude function defining spectral
density tensor

burned gas
combustible mixture
critical
potential-flow velocity component
shear-flow velocity component
orthogonal coordinate designation
designates order of steady-flow quantity

designates order of fluctuation quantity
denotes complex conjugate
denotes fluctuation quantitv except where

othtie specified - - -

APPENDIX B

ATTENUATING-JVAVE SOLUTION FOR SINGLE-WAVE INTERACTION

The arguments of the various fluctuation quantities are
equal at the fl~O frOnt where z.=ut and ‘zb=@— ~t.
Therefore, substituting equations (10) into equations (3)
and (5) and separately equating the real terms and the
imaginary terms provide the following set of equations:

()
J, 1+$ +BIL1–BJV1–BZQ1=

–B~A SiJl ~–BsW,+BzR,

I

(331)

()
J, 1+$ +BILS–B2N2-B,G, = –B,W,+B,R,

()
J1 1–; –L1–KIN,–KIQ1= –K4W1–

K& Sill ~+K,R,+K,r’–(K, –K4)B,

()
1

(132)

J, 1–$ –~–K,N,–K,Q2=

–K4W~+ K2R~–(K1–K4)Hj

$ J1+L1+(D1-l)HI-DINI-D, Q1=

–WI-A Sill ~+:R, I(B3)

~J,+L,+(D,–l)H, –DIN,–D,Q,=–W2+~R,

()–k, &v G,=k,I,

u
()‘kl u–v “=k’r’

(w

(B5)

(B6)

(137)
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f.%dcwl=~ (fJL+b.&)

dcW,+f.W,=&2 (–bcRl+fJL)
}

From equations (135), (B6), (B8), (B9), and (B1O),

iv,=h,(h2J,---h3c7J

N2=MW1+LJJ }

P,=h,(–h,J,–h,c7,)

F’,=h,(h,J,-h4c7,)
}

W,=h&R,+hR2)

w,=h.b(-&R,+hqR* }

(B8)

(B9)

(B1O)

(ml)

(B12)

@13)

(B14)

(B15)

(1316)

From equations (B4), (B7), (B12), 0314), and (1315),

where

k:

[
~ (A+h&)+h&]

al=m ,

a,=H+$E’l
Then, from equation (132),

r-l 1

L=JI ~–;–K(hJ2 j–US) +J2[K(W+41 +

R,[K,(l&-a&Kz+ (lC,-XJAI+

R2[K1(Ms+41+44 sin p[Kl(l–a6)]–K37’

[
L=– JWG(M+41+J2 1 1–~–K,(hlL–4 –

R,[K,(h&+c4] +R,[K,(h&-a&K~+

(~,–&)A]

(B18)

(B19)

The various disturbance amplitude coefficients of equa-
tions (10) have now- been obtained in terms of the coefficients
R,, % J1, J2 and the parameters A sin
equations @l) and (133),

Jlq+ J2ti+&%+&4= %

–J,152+J,EI-RIE4+R263=0

J16+J2ti+R168+&&=~10

‘Jlti+J2@-Rld_RZ ~8=o

where

p and r’. From

‘3= 1+~1—(WG+~2)(M2-%)

q =(B1K1+B2)(h1&+aJ

%=(Bl~l+B9)(~—al) +Bl(~l—~i)A— Bs— BIXz

~= (mL+a(Ma+%J

e,= Z3&r’-A sin q [@@C, +Bz)(l-aJ

i?6=l-(D,+Kl)(hlh2 -%)-

~=(D1+K)(Mk+a4)

%=(D1+~l)(&—a~+ (Dl—l)A—~~~(Xl—~JA

.sg=(Dl+Kl)(h&$+a2)

~0=.K3T’-A Sin @,+~,)(l-a5)

(B20)

(B21)



If terms of order M are retained, equations (1) provide
the following relations for the unperturbed-flow quantities:

B=l–7(T–l)M’+ . . .
pa ~

p. u–v
[

-=—=, 1+’+ (r-l).M’+ . . .
Pb u 1

CPT8~
-=;+(7_;w2

u’
U2 ~, s

7=7[2—(7—l)(T—1 )M2—(’Y2-1)T(P1)M4+ ...1

With these relations, equations (4) take the form

Bl=-tTM~, llz=mdcf~, B,=1+[1+7(7–l)W’
1

K,=K4=(7-l)M~, K2 l“”

and equations (9) may be written

bG=b,=– k~’,C.=C,=& dc=k:(l+M),d,=M(l+~w]

If only the lesding terms in powers of M’ are retained,
equations (B16) and (1318) provide the following relations:

(C3)

and

a,=+ [l–(T–l) tan’ p]
1

+%lP $0 tan (p
—

-m@

(C4)

73 tan8 q

a4=7iWl +# tan’ p)

From these relations:

Fmm equations (1321) and (C5),

sin q cm’ $0(1++ tad (p)
qe9-e4G3= TM%

(7–-1)SiLP$o(Ttan’ (0-1)
q% —e’%=— 7M2r

}

(C6)
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rmd fkom equations (1321), (1324), and (C6):

61= sfi7{4y,s p [(7+1)(1+7 tan’ p)–

2 tan’ p(7-l)T(T tan’ rl)]

62=* [(7–1)(7 tan’ p–l)+2(7+l)T(7 tan’ fil)]

f33=-tanfO[#—2(T–l)(Ttd p–l)zlsinp]

~4=–(T–1) tanp sin2q(7tan’ P–1)

‘YzM4r

3,=(7+1)(7 tan’P+l) sin’q
~l~4r

(C7)

Since for constan~pressure combustion R(’) = R#yM2, R(2)
= RJ7M’, and so forth, the coefficients R(l), Raj, J(l), and J(z)
are obtained from equations (B22), (1323), (C6), und (C7).
With these coei%cient.s determined, the remainder ore
obtained from equations (’137), (B1l) to (B14), (B17), ancl
@19). The amplitude coefficients are

R(l)+
{

(T–1)’(r tan’ p–1)’A sin q–[T2(++2T-1) tan’p+ T(T2+l)]~
}

R(’)= JO)= .-~
Atan(p {

(+-1) (,’ tan’ ~–l)A sin p+[#(T-1) tan4P–2P tan’ P–7(7+1)] ~
}

JW=-;

{

(T–1)2(Ttan’ p–l)2A sinp+ T’[T(T-1)’tan4 q+(T2+2T–1) tan’ w+2]~
}

~=–:, L’=o

NI= ‘r
A(1+72 tan’ q) (

(~–1)(7 tan’ p-l) [(.+1)(7 tan’ p+l)-7(7-1) tan’ 9(7 tan’ p–l)]A sin p–

{ })
T T’ h’ p[T(T–1)2 hn’ fO+T(T+l) h,112 $LY!_A]+(T+l) ~

iv’=

{

‘7(’–1) ‘m p (T tan’ P–1)[T(T+1)(7 tan’ w+l)+(~–1)(7 tan’ p–l)]A sin p+
A(l +T’ tan2 P)

72[7(2T—1) tan4 P—(7—1) tanz q—l] ;
}

(?,=
T

A(l +~’ tan’ ~) {
[(T+l)’(r tan’ p+l)2+T(T–1)2 tan’ P(T tan’ ~–1)’JA sin ~

T(T–l) t~’ (p[T(T’+%-l) kn’ fp+(T2+l)]~
}

{
(T’-l)(T tW12 $9_l)(T hl’ ~+l)A Shl W+[T3(7–1) tM14$0-2T3 tfL112P–7(7+1)] $

}

Pl= —N:, P’=NI

1,=—*
,:, l’=s,

m+ { (T—1 )(Ttan’ p-l)[T(T-1) tan’ p+(T+l)]A sinp– [T’(3T-1)tan’ q+ T(+l)] ~
}

7(7—1) tan p
w,=– A

{

Z(T tan’ ~–l)A sin P+ T[T tan’ ~+1] ;
}

Xl= Ha= W2, X2= —WI

H,=~
{

2(T+1)(T tan’ p+l)A sin p+[T(3T–1) tan’ p+(T+l)] ~
}

(08)
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For constant-pressure combustion, rc= l~=k~ Ut+kiy,

~c=k~(~e– Ut), ~b=k:[–~b+ (U—WI, ~=k:~.+kkbk~+
;

k~y, and u=kiUt+kjy. At the flame front where ZC= Z7t

and z~= (U— V)t, ~e=~b=(), the attenuation factors e~u
and e-~b are 1, and the arguments of the disturbance waves
have the form (k{ Ut+kiy).

The procedure of reference 23 is utilized in reference 22 to
trent n aknilar interaction problem for consideration of
flame-front stability. It is assumed that there are iimk
order perturbations in the laminar flame speed U (in the
present notation). Reference 22 presents results only for
the special case where the plane of polarization of the inci-
dent shear wave is in the plane z,, ,–G, .(O=OO) and the
wave-number vector is parallel to the unperturbed’ flame
front (9=900). The results of the present analysis were
compared with those of reference 22 for the case of an
absence of first-order perturbations in the laminar flame
speed and for the special case of 0=0° and W=90° without
heat-release perturbations. Although agreement as to sign
and magnitude is obtained for the shear-field velocity com-
ponents, apparently differences in sign occur for the potential-
field velocity~omponent amplitudes as indicated in the

P% -%%?-%— —
–A –A

fA -L-4

A –A

L4

I
fA

Consideration of conservation of momentum acrosa the
flame front indicates that o;, JU and v;, ,/U should be of the
same sign. The present analysis is in agreement with this
consideration.
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